

3

90717

NEW ZEALAND QUALIFICATIONS AUTHORITY
MANA TOHU MĀTAURANGA O AOTEAROA

For Supervisor's use only

Level 3 Biology, 2007

90717 Describe processes and patterns of evolution

Credits: Three
9.30 am Tuesday 27 November 2007

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should answer ALL the questions in this booklet.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–10 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

For Assessor's use only		Achievement Criteria			
Achievement		Achievement with Merit		Achievement with Excellence	
Describe processes and patterns of evolution.	<input type="checkbox"/>	Describe processes and explain patterns of evolution.	<input type="checkbox"/>	Describe processes and discuss patterns of evolution.	<input type="checkbox"/>
Overall Level of Performance				<input type="checkbox"/>	

You are advised to spend 40 minutes answering the questions in this booklet.

QUESTION ONE: PATTERNS OF EVOLUTION

Nectar bats feed on the nectar from flowers. One species of nectar bat, *Anoura fistulata*, can extend its tongue more than 80 mm (see below). This is more than twice the tongue length in other species of nectar bat.

*For copyright reasons,
this resource cannot
be reproduced here.*

The nectar bat *Anoura fistulata*, extending its tongue.

After N. Muchala (2006) Nectar bat stows huge tongue in its ribcage *Nature* 444: 701–702

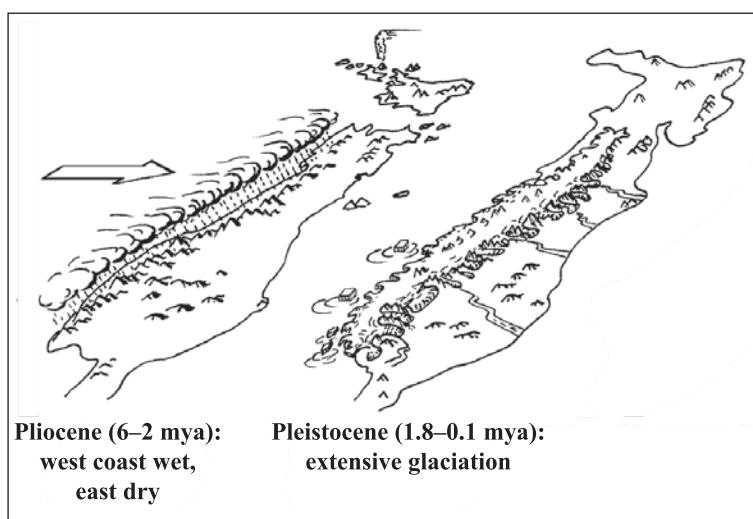
*For copyright reasons,
this resource cannot
be reproduced here.*

Anoura fistulata feeding.

http://www.newscientist.com/data/images/ns/cms/dn10721/dn10721-2_742.jpg

(a) Name and describe the **pattern of evolution** shown by the relationship between this nectar bat and its food plant.

(b) Explain the role of **natural selection** in the evolution of the features shown by the bat and its food plant.


There are many endemic species of cockroach (genus *Celatoblatta*) in the South Island (below), which have undergone adaptive radiation over the last 6 million years. During this time, the region was first warm and wet, and then heavily glaciated during the last ice age (see diagram bottom of this page).

Assessor's
use only

*For copyright reasons,
this resource cannot
be reproduced here.*

Phylogenetic tree for South Island cockroaches (*Celatoblatta* spp.)

W. Chin & N. Gemmell (2004) *Molecular Ecology* 13:1507–1518

*For copyright reasons,
this resource cannot
be reproduced here.*

Locations of *Celatoblatta* species
in the South Island

adapted from W. Chin & N. Gemmell (2004)
Molecular Ecology 13:1507–1518

(c) Discuss how **geological history** has affected the adaptive radiation and distribution of *Celatoblatta* species in the South Island.

Assessor's
use only

(d) The phylogenetic tree suggests that there are two distinct populations of *C. montana* on Mt Taylor (in the Central region).

Explain the significance of these two populations.

QUESTION TWO: PROCESSES OF EVOLUTION

Plants in the genus *Libertia* are found throughout New Zealand, Australia, and South America. The table below shows the chromosome numbers for several of these species.

*For copyright
reasons,
this resource cannot
be reproduced here.*

en.wikipedia.org/wiki/Libertia

Chromosome number for different *Libertia* species.

Location	<i>Libertia</i> species	Diploid chromosome number
New Zealand	<i>L. puchella</i>	38
	<i>L. grandiflora</i>	114
	<i>L. peregrinans</i> (except from inland Nelson)	114
	<i>L. peregrinans</i> (inland Nelson)	171
	Artificial hybrids between <i>ixioides</i> and <i>grandiflora</i>	171
Australia	<i>L. ixiooides</i>	228
	<i>L. puchella</i> (Tasmania)	38
	<i>L. paniculata</i>	76
South America	<i>L. caeruleascens</i>	38
	<i>L. formosa</i> (Chile)	76

D. J. Blanchon, B. G. Murray, & J. E. Braggins (2000) Chromosome numbers in the genus *Libertia* (Iridaceae). *NZ J. Bot.* 38: 245–250

(a) Use the information from the table to describe how these different *Libertia* species have evolved.

The diploid number of chromosomes in ancestral *Libertia* is 38.

(b) Explain how *L. paniculata* ($2n = 76$) could have evolved from *L. puchella*.

L. peregrinans, from **inland Nelson**, has a different chromosome number, and is different in appearance, from other populations of this species.

Assessor's
use only

(c) Explain how this inland Nelson population could have evolved, AND give evidence from the table on the opposite page to support your answer.

**Note that Question Two
continues on the next page.**

African indigobirds lay their eggs in the nests of various species of finch. Indigobirds are very selective in host choice. There are many species of finch in the area, but each indigobird species has a particular finch host. Indigobird nestlings are reared with the host young and learn their songs. Adult male indigobirds mimic the song of their host species. Adult females use these songs to choose breeding partners and also to choose the nests in which the females lay their eggs.

Assessor's
use only

*For copyright reasons,
this resource cannot
be reproduced here.*

*For copyright reasons,
this resource cannot
be reproduced here.*

www.bu.edu/research/graphics/spotlight/bird.jpg

Taxonomic relationships of indigobirds
and their estrilid finch hosts.

Sorenson *et al.* (2003) Speciation by host switch in
brood parasitic indigobirds. *Nature* **424**: 928–931

(d) Explain how the data in the above diagram support the statement that “*indigobird evolution shows adaptive radiation and punctuated equilibrium*”.

(e) Indigobird speciation appears to be sympatric.

Discuss how new indigobird species could evolve. You should include the role of song and other isolating mechanisms in your answer.

Assessor's
use only

**Extra paper for continuation of answers if required.
Clearly number the question.**

Assessor's
use only

Question
number

90717